Novel muscle chloride channel mutations and their effects on heterozygous carriers.
نویسندگان
چکیده
Mutations within CLCN1, the gene encoding the major skeletal muscle chloride channel, cause either dominant Thomsen disease or recessive Becker-type myotonia, which are sometimes difficult to discriminate, because of reduced penetrance or lower clinical expressivity in females. We screened DNA of six unrelated Becker patients and found four novel CLCN1 mutations (Gln-74-Stop, Tyr-150-Cys, Tyr-261-Cys, and Ala-415-Val) and a previously reported 14-bp deletion. Five patients were homozygous for the changes (Gln-74-Stop, Ala-415-Val, and 14-bp deletion), four of them due to parental consanguinity. The sixth patient revealed compound heterozygosity for Tyr-150-Cys and Tyr-261-Cys. Heterozygous carriers of the Becker mutations did not display any clinical symptoms of myotonia. However, all heterozygous males, but none of the heterozygous females, exhibited myotonic discharges in the electromyogram suggesting (i) a gene dosage effect of the mutations on the chloride conductance and (ii) male predominance of subclinical myotonia. Furthermore, we report a novel Gly-200-Arg mutation resulting in a dominant phenotype in a male and a partially dominant phenotype in his mother. We discuss potential causes of the gender preference and the molecular mechanisms that may determine the mode of inheritance.
منابع مشابه
Novel CLCN1 mutations with unique clinical and electrophysiological consequences.
Myotonia is a condition characterized by impaired relaxation of muscle following sudden forceful contraction. We systematically screened all 23 exons of the CLCN1 gene in 88 unrelated patients with myotonia and identified mutations in 14 patients. Six novel mutations were discovered: five were missense (S132C, L283F, T310M, F428S and T550M) found in heterozygous patients, and one was a nonsense...
متن کاملSpectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia.
Autosomal dominant myotonia congenita and autosomal recessive generalized myotonia (GM) are genetic disorders characterized by the symptom of myotonia, which is based on an electrical instability of the muscle fiber membrane. Recently, these two phenotypes have been associated with mutations in the major muscle chloride channel gene CLCN1 on human chromosome 7q35. We have systematically screene...
متن کاملA Novel Missense Mutation in CLCN1 Gene in a Family with Autosomal Recessive Congenital Myotonia
Congenital recessive myotonia is a rare genetic disorder caused by mutations in CLCN1, which codes for the main skeletal muscle chloride channel ClC-1. More than 120 mutations have been found in this gene. The main feature of this disorder is muscle membrane hyperexcitability. Here, we report a 59-year male patient suffering from congenital myotonia. He had transient generalized myotonia, which...
متن کاملClC-1 chloride channel mutations in myotonia congenita: variable penetrance of mutations shifting the voltage dependence.
Mutations in the ClC-1 muscle chloride channel cause either recessive or dominant myotonia congenita. Using a systematic screening procedure, we have now identified four novel missense mutations in dominant (V286A, F307S) and recessive myotonia (V236L, G285E), and have analysed the effect of these and other recently described mutations (A313T, I556N) on channel properties in the Xenopus oocyte ...
متن کاملThe Relationship between Mutation in HOXB1 Gene and Acute Myeloid Leukemia
Background: HOX genes are an exceedingly preserved family of homeodomain-involving transcription factors. They are related to a number of malignancies, comprising acute myeloid leukemia (AML). This study aimed to evaluate the effect of HOXB1 7bp deletion mutation on HOXB1gene expression in 36 individuals. Materials and Methods: The present cross-sectional study was done on a large Iranian fami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of human genetics
دوره 58 2 شماره
صفحات -
تاریخ انتشار 1996